
Benchmarking Zero-Knowledge Proofs with isekai ∗

Guillaume Drevon, Aleksander Kampa

December 2019

Abstract

We present the results of a benchmarking exercise for five ZK proof systems sup-
ported by the isekai verifiable computation framework. Because identical arithmetical
circuits are used, a direct comparison becomes possible. Results are provided for three
types of computations: dynamic memory access, array sorting and sha256 hashing.

Keywords: zero-knowledge, benchmarking.

1 Introduction

The recently released version 1.0 of the isekai verifiable computation framework supports
the following proof systems: libsnark (Groth16 and BCTV14a), dalek (Bulletproof) and
libiop (Aurora and Ligero). It is therefore now possible to directly compare several zero-
knowledge proof systems, using identical arithmetic circuits. This paper describes the
result of a benchmarking exercise of these proof systems for three types of computations:
dynamic memory access, array sorting and sha256 computations.

This paper is structured as follows. We first provide an overview of isekai in Section 2,
then describe the computations and the benchmarking setup in Sections 3 and 4. Section
5 focuses on proof times, Section 6 on proof sizes and Section 7 on verification times. After
a brief conclusion, tables of detailed benchmarking results as well as the source code of
C/C++ programs used are provided as appendices.

∗Research supported by Fantom Foundation

1

2 About isekai

Isekai [ise] is an open-source verifiable computation framework developed by Sikoba Re-
search [Sik] with the support of Fantom Foundation [Fan] and written in Crystal language
[Cry]. The isekai project was started in October 2018. The goal was to create a tool
that would allow a non-specialist to use zero-knowledge proofs by connecting source code
written in standard programming languages with zero-knowledge proof systems.

With the release of isekai 1.0 in November 2019, these goals have arguably been achieved
to a reasonable degree:

1 — Thanks to its LLVM [LLV] frontend, isekai now works with C and C++ programs
and potentially with any language with an LLVM frontend. There are still some limita-
tions, of course: for example, only integers-like types are supported. Overall, however, it
supports more language features than other projects in the ZK space.

2 — isekai is able to interface with several zero-knowledge proof libraries, with each hav-
ing different properties such as no trusted setup, quantum resistance, compactness, etc.
Specifically, isekai supports: libsnark (Groth16 and BCTV14a), dalek (Bulletproof) and
libiop (Aurora and Ligero).

3 Computations

The first computation is simply doing dynamic memory access (think of a[b[i]]). Internally,
isekai uses many conditionals (ifs) to handle this, and the number of conditions grows
linearly with the array size. The tests are named cond10, cond100 and cond1000, with
array sizes 10, 100 and 1000 respectively. Cond1000 has more than 6 million constraints.
This shows the limitation of the current implementation, and although it can be slightly
improved (we can easily reduce the constraints number from 3n to 2n), the best way to
handle this is by implementing TinyRAM techniques. But that’s a topic for isekai 2.0!

The second computation is simply sorting an array and returning the median. The sorting
involves many comparisons that are not ZKP friendly. As a result, we could not perform
the test of sorting an array of 1,000 elements because it generated more than 5 million
constraints. This once again shows the limitation of the current implementation. Sorting
is best handled with dedicated constraints such as a dedicated ZKP SORT function, but
this would deviate from the isekai approach, which is to use regular programming lan-
guage features. The tests are named med10 and med100 with array sizes of 10 and 100
respectively.

Finally, for the third test, we have selected a widely-used function: a sha256 computation.
While the first two tests show isekai’s limitations, this one shows how powerful isekai
can be. To implement a zero-knowledge proof of a sha256 computation, we simply took
the first C++ implementation we found on the web and modified it slightly to make it
compatible with isekai — the changes were easy and straightforward. Then, using isekai,
we were immediately able to produce a proof of a hash computation using several proof
schemes. The tests are named h32, h128, h512 and h1024 and compute the sha256 of
a byte array of size 32, 128, 512 and 1024, respectively. h1024 generates around 1 million
constraints.

2

4 Benchmarking setup

We have compared all the ZK schemes supported by isekai using identical arithmetic
circuits. This gives consistent results, although there may still be some implementation
issues, compiling options or system settings (such as curve choice) that can affect the
results.

The computer used was a Lenovo T580 laptop with an i7–8550U processor (base frequency
@ 1.80 GHz, turbo @ 4.00 GHz), 32 GB RAM and a 1 TB SSD hard drive. Note that for
computations involving the most constraints, the entire memory was used and the system
had to swap, which obviously affected performance.

The results are plotted against the number of constraints.

5 Proof Time

We start by looking at proof times. We see that Ligero has a very good performance,
comparable to those of zk-SNARKs even without a trusted setup. However, it did not
work on the last two tests, those with many constraints, for which we kept getting an
‘out of memory’ error. This may be due to the implementation, because we had to im-
plement some padding regarding the number of variables and this has an impact on both
performance and stability.

103 104 105 106 107
10−1

100

101

102

103

104

Constraints

T
im

e
(s

ec
on

d
s)

Plot 1: Proof Time

BCTV14a
Groth16

Bulletproof
Ligero
Aurora

3

The graph does not always show an increase, meaning that the number of constraints
is not the only factor affecting performance. The complexity of the constraints is also
important.

6 Results: Proof and Trusted Setup Sizes

Next, we look at proof and trusted setup sizes. Bulletproof has the lowest performance
overall but its proof size stays really low, considering that it does not require a trusted
setup. This leaves room for a trade-off between proof size and proof time.

103 104 105 106 107
102

103

104

105

106

107

108

109

1010

Constraints

B
y
te

s

Plot 2: Proof Size vs. Trusted Setup

BCTV14a
Groth16

Bulletproof
Ligero
Aurora

Groth16 trusted setup

The proof size of zk-SNARKs is extremely small and constant: 209 bytes for the Groth16
scheme and 437 bytes for BCTV14a. However, the size of the trusted setup grows rapidly,
up to 12 gb for 6 million constraints. Note that this is the raw data, and it turns out that
this data compresses very well. One can expect a 10:1 ratio when compressing a trusted
setup.

Note that Ligero’s performance comes at a cost: its proof size is much higher than that of
Bulletproof (4 to 6 kb) and Aurora (200 to 600kb).

4

103 104 105 106 107
106

107

108

109

1010

Constraints

B
y
te

s
Plot 3: Size of Trusted Setup

BCTV14a
Groth16

103 104 105 106 107
10−2

10−1

100

101

102

103

Constraints

S
ec

on
d

s

Plot 4: Verification Time

BCTV14a
Groth16

Bulletproof
Ligero
Aurora

5

7 Results: Verification Time

Finally, we look at the verification time, which is shown in Plot 4. It follows the same
pattern as the proving time but is always significantly faster. As noted before, dynamic
memory access is currently not handled efficiently in isekai, which results in slow verifica-
tion times for the cond1000 computation.

8 Conclusion

In conclusion, there is no overall winner: all proof systems have different pros and cons,
different properties and different security assumptions. As long as issues related to trusted
setup size and generation are handled, zk-SNARKs clearly have the best performance.
Bulletproofs manage an impressively small proof size without trusted setup, but Aurora
has a faster proof time and is quantum resistant.

We note that new proof systems have shown up recently, for instance Fractal, an improve-
ment over Aurora, or Marlin and Plonk, based on polynomial commitments. We hope to
be able to test them in a future isekai benchmarking exercise.

References

[Cry] Crystal language. https://crystal-lang.org/.

[Fan] Fantom foundation. https://fantom.foundation.

[ise] isekai. https://github.com/sikoba/isekai.

[LLV] Llvm. https://llvm.org.

[Sik] Sikoba research. https://research.sikoba.com.

6

https://crystal-lang.org/
https://fantom.foundation
https://github.com/sikoba/isekai
https://llvm.org
https://research.sikoba.com

Appendix 1: Benchmarking Data

The detailed results of the benchmarking exercise are provided in the tables below.

Table 1: Circuit and R1CS

Name Circuit* R1CS* Constraints Witnesses

Dynamic memory access

cond10 0.2 0.4 1,767 1,745
cond100 6.7 40.8 85,745 85,461
cond1000 600.0 4,181.0 6,266,234 6,263,354

Sorting an array

med10 0.2 0.4 4,752 4,646
med100 24.1 77.2 506,502 495,326

sha256 computation

h32 4.2 55.6 41,210 40,958
h128 13.0 502.0 145,061 144,403
h512 43.3 2,640.0 481,091 478,906
h1024 85.5 7,060.0 904,058 899,843

* size in MB

Table 2: Proof time (seconds)

Name bctv14a groth16 bulletproof ligero aurora

Dynamic memory access

cond10 0.2 0.3 1.0 0.7 0.5
cond100 12.3 10.3 38.6 12.7 30.6
cond1000 1,378.2 1,277.0 3450.0 - 2,918.5

Sorting an array

med10 0.6 0.5 2.3 0.7 1.3
med100 77.4 63.8 283.5 27.2 108.5

sha256 computation

h32 5.7 4.7 21.2 4.4 13.0
h128 28.8 24.2 82.7 23.6 62.3
h512 129.6 113.5 307.5 122.9 171.0
h1024 335.0 328.7 717.8 - 428.3

7

Table 3: Verification time (seconds)

Name bctv14a groth16 bulletproof ligero aurora

Dynamic memory access

cond10 0.0 0.0 0.2 0.5 0.1
cond100 2.6 2.2 9.6 6.4 3.7
cond1000 416.0 374.5 887.0 - 506.6

Sorting an array

med10 0.6 0.0 0.4 0.6 0.1
med100 9.3 6.0 45.6 20.1 9.7

sha256 computation

h32 1.2 1.1 5.4 3.5 2.0
h128 9.6 8.1 28.0 18.0 14.6
h512 50.8 49.2 113.7 90.6 65.1
h1024 179.0 165.2 280.9 - 174.0

Table 4: Proof size (bytes)

Name bctv14a groth16 bulletproof ligero aurora

Dynamic memory access

cond10 437 209 4,062 2,090,000 235,351
cond100 437 209 5,146 13,300,000 410,156
cond1000 437 209 6,464 - 629,000

Sorting an array

med10 437 209 4,306 3,800,000 250,000
med100 437 209 5,810 27,100,000 404,300

sha256 computation

h32 437 209 4,931 7,700,000 321,289
h128 437 209 5,351 14,100,000 445,000
h512 437 209 5,146 26,900,000 407,200
h1024 437 209 6,015 - 517,000

8

Table 5: Trusted Setup

Size (MB) Time (seconds)

Name BCTV14a Groth16 BCTV14a Groth16

Dynamic memory access
cond10 1.8 1.5 0.4 0.3
cond100 134.0 124.0 13.7 10.0
cond1000 12,595.0 11,878.0 1,017.2 900.7

Sorting an array
med10 3.1 2.3 0.7 0.6
med100 366.0 293.0 76.2 50.6

sha256 computation
h32 66.3 61.7 6.2 4.6
h128 491.0 474.0 32.6 27.6
h512 2,488.0 2,426.0 154.5 131.1
h1024 6,481.0 6,379.0 357.9 331.4

9

Appendix 2: Source code

Here is the source code of the programs we used for the benchmarking. It can also be
found on github at the following address:

https://github.com/sikoba/isekai/tree/develop/tests/benchmark1

cond100.c – Dynamic Memory Access

1 struct Input {

2 int a[100];

3 int b[100];

4

5 };

6

7 struct Output {

8 int x;

9 };

10

11 static inline __attribute__((always_inline)) int compute(int a[],int b[], int n) {

12 int result = 0;

13 for(int i = 0;i < n-1;i++)

14 {

15 if (b[i] < n/2)

16 result *= a[b[i]];

17 else

18 result += a[b[i]];

19 }

20 return result;

21

22 }

23

24

25 void outsource(struct Input *input, struct Output *output)

26 {

27 int n=sizeof(input->a) / sizeof(input->a[0]);

28

29 output->x = compute(input->a, input->b, n);

30 }

med100.c – Median

1 struct Input {

2 int a[101];

3

4

5 };

6

7 struct Output {

8 int x;

9 };

10

https://github.com/sikoba/isekai/tree/develop/tests/benchmark1

10

11 static inline __attribute__((always_inline)) void swap(int *p,int *q) {

12 int t;

13

14 t=*p;

15 *p=*q;

16 *q=t;

17 }

18

19 static inline __attribute__((always_inline)) void sort(int a[],int n) {

20 int i,j;

21

22 for(i = 0;i < n-1;i++) {

23 for(j = 0;j < n-i-1;j++) {

24 if(a[j] > a[j+1])

25 {

26 swap(&a[j],&a[j+1]);

27 }

28 }

29 }

30 }

31

32 void outsource(struct Input *input, struct Output *output)

33 {

34 int n=sizeof(input->a) / sizeof(input->a[0]);

35

36 sort(input->a,n);

37

38 output->x = input->a[n/2];

39 }

hash.cpp – Sha256

1 #include <string.h>

2 #include <cstdio>

3

4 #define SHA2_SHFR(x, n) (x >> n)

5 #define SHA2_ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))

6 #define SHA2_ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n)))

7 #define SHA2_CH(x, y, z) ((x & y) ^ (~x & z))

8 #define SHA2_MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))

9 #define SHA256_F1(x) (SHA2_ROTR(x, 2) ^ SHA2_ROTR(x, 13) ^ SHA2_ROTR(x, 22))

10 #define SHA256_F2(x) (SHA2_ROTR(x, 6) ^ SHA2_ROTR(x, 11) ^ SHA2_ROTR(x, 25))

11 #define SHA256_F3(x) (SHA2_ROTR(x, 7) ^ SHA2_ROTR(x, 18) ^ SHA2_SHFR(x, 3))

12 #define SHA256_F4(x) (SHA2_ROTR(x, 17) ^ SHA2_ROTR(x, 19) ^ SHA2_SHFR(x, 10))

13 #define SHA2_UNPACK32(x, str) \

14 { \

15 *((str) + 3) = (uint8) ((x)); \

16 *((str) + 2) = (uint8) ((x) >> 8); \

17 *((str) + 1) = (uint8) ((x) >> 16); \

18 *((str) + 0) = (uint8) ((x) >> 24); \

19 }

20 #define SHA2_PACK32(str, x) \

21 { \

22 *(x) = ((uint32) *((str) + 3)) \

23 | ((uint32) *((str) + 2) << 8) \

11

24 | ((uint32) *((str) + 1) << 16) \

25 | ((uint32) *((str) + 0) << 24); \

26 }

27 #define SHA224_256_BLOCK_SIZE 64

28 #define DIGEST_SIZE 32

29

30 struct Input {

31 char a[32];

32 };

33

34 struct Output {

35 unsigned char digest[DIGEST_SIZE];

36 };

37

38

39 class SHA256

40 {

41 protected:

42 typedef unsigned char uint8;

43 typedef unsigned int uint32;

44 typedef unsigned long long uint64;

45

46 uint32 sha256_k[64];

47

48 public:

49 __attribute__((always_inline)) SHA256()

50 {

51 sha256_k[0] = 0x428a2f98; sha256_k[1] = 0x71374491; sha256_k[2] = 0xb5c0fbcf;

sha256_k[3] = 0xe9b5dba5;↪→

52 sha256_k[4] = 0x3956c25b; sha256_k[5] = 0x59f111f1; sha256_k[6] = 0x923f82a4;

sha256_k[7] = 0xab1c5ed5;↪→

53 sha256_k[8] = 0xd807aa98; sha256_k[9] = 0x12835b01; sha256_k[10] = 0x243185be;

sha256_k[11] = 0x550c7dc3;↪→

54 sha256_k[12] = 0x72be5d74; sha256_k[13] = 0x80deb1fe; sha256_k[14] = 0x9bdc06a7;

sha256_k[15] = 0xc19bf174;↪→

55 sha256_k[16] = 0xe49b69c1; sha256_k[17] = 0xefbe4786; sha256_k[18] = 0xfc19dc6;

sha256_k[19] = 0x240ca1cc;↪→

56 sha256_k[20] = 0x2de92c6f; sha256_k[21] = 0x4a7484aa; sha256_k[22] = 0x5cb0a9dc;

sha256_k[23] = 0x76f988da;↪→

57 sha256_k[24] = 0x983e5152; sha256_k[25] = 0xa831c66d; sha256_k[26] = 0xb00327c8;

sha256_k[27] = 0xbf597fc7;↪→

58 sha256_k[28] = 0xc6e00bf3; sha256_k[29] = 0xd5a79147; sha256_k[30] = 0x6ca6351;

sha256_k[31] = 0x14292967;↪→

59 sha256_k[32] = 0x27b70a85; sha256_k[33] = 0x2e1b2138; sha256_k[34] = 0x4d2c6dfc;

sha256_k[35] = 0x53380d13;↪→

60 sha256_k[36] = 0x650a7354; sha256_k[37] = 0x766a0abb; sha256_k[38] = 0x81c2c92e;

sha256_k[39] = 0x92722c85;↪→

61 sha256_k[40] = 0xa2bfe8a1; sha256_k[41] = 0xa81a664b; sha256_k[42] = 0xc24b8b70;

sha256_k[43] = 0xc76c51a3;↪→

62 sha256_k[44] = 0xd192e819; sha256_k[45] = 0xd6990624; sha256_k[46] = 0xf40e3585;

sha256_k[47] = 0x106aa070;↪→

63 sha256_k[48] = 0x19a4c116; sha256_k[49] = 0x1e376c08; sha256_k[50] = 0x2748774c;

sha256_k[51] = 0x34b0bcb5;↪→

64 sha256_k[52] = 0x391c0cb3; sha256_k[53] = 0x4ed8aa4a; sha256_k[54] = 0x5b9cca4f;

sha256_k[55] = 0x682e6ff3;↪→

65 sha256_k[56] = 0x748f82ee; sha256_k[57] = 0x78a5636f; sha256_k[58] = 0x84c87814;

sha256_k[59] = 0x8cc70208;↪→

66 sha256_k[60] = 0x90befffa; sha256_k[61] = 0xa4506ceb; sha256_k[62] = 0xbef9a3f7;

sha256_k[63] = 0xc67178f2;↪→

67

68 m_h[0] = 0x6a09e667;

12

69 m_h[1] = 0xbb67ae85;

70 m_h[2] = 0x3c6ef372;

71 m_h[3] = 0xa54ff53a;

72 m_h[4] = 0x510e527f;

73 m_h[5] = 0x9b05688c;

74 m_h[6] = 0x1f83d9ab;

75 m_h[7] = 0x5be0cd19;

76

77 m_len = 0;

78 m_tot_len = 0;

79 }

80

81 void update(const unsigned char *message, unsigned int len);

82 void final(unsigned char *digest);

83

84 protected:

85 void transform(const unsigned char *message, unsigned int block_nb);

86 unsigned int m_tot_len;

87 unsigned int m_len;

88 unsigned char m_block[2*SHA224_256_BLOCK_SIZE];

89 uint32 m_h[8];

90 };

91

92 extern "C" {

93 void outsource(Input *, Output *);

94 extern void _unroll_hint(unsigned);

95 };

96

97 inline __attribute__((always_inline)) void SHA256::transform(const unsigned char *message,

unsigned int block_nb)↪→

98 {

99 uint32 w[64];

100 uint32 wv[8];

101 uint32 t1, t2;

102 const unsigned char *sub_block;

103 int i;

104 int j;

105 for (i = 0; i < (int) block_nb; i++) {

106 sub_block = message + (i << 6);

107 for (j = 0; j < 16; j++) {

108 SHA2_PACK32(&sub_block[j << 2], &w[j]);

109 }

110 for (j = 16; j < 64; j++) {

111 w[j] = SHA256_F4(w[j - 2]) + w[j - 7] + SHA256_F3(w[j - 15]) + w[j - 16];

112 }

113 for (j = 0; j < 8; j++) {

114 wv[j] = m_h[j];

115 }

116 for (j = 0; j < 64; j++) {

117 t1 = wv[7] + SHA256_F2(wv[4]) + SHA2_CH(wv[4], wv[5], wv[6])

118 + sha256_k[j] + w[j];

119 t2 = SHA256_F1(wv[0]) + SHA2_MAJ(wv[0], wv[1], wv[2]);

120 wv[7] = wv[6];

121 wv[6] = wv[5];

122 wv[5] = wv[4];

123 wv[4] = wv[3] + t1;

124 wv[3] = wv[2];

125 wv[2] = wv[1];

126 wv[1] = wv[0];

127 wv[0] = t1 + t2;

128 }

13

129 for (j = 0; j < 8; j++) {

130 m_h[j] += wv[j];

131 }

132 }

133 }

134

135 inline __attribute__((always_inline)) void * memcopy(unsigned char * destination, const

unsigned char * source, size_t num)↪→

136 {

137 for (int i = 0 ; i < num ; ++i)

138 {

139 *(destination+i) = *(source+i);

140 }

141 return destination;

142 }

143

144

145 inline __attribute__((always_inline)) void SHA256::update(const unsigned char *message,

unsigned int len)↪→

146 {

147 unsigned int block_nb;

148 unsigned int new_len, rem_len, tmp_len;

149 const unsigned char *shifted_message;

150 tmp_len = SHA224_256_BLOCK_SIZE - m_len;

151 rem_len = len < tmp_len ? len : tmp_len;

152 memcopy(&m_block[m_len], message, rem_len);

153 if (m_len + len < SHA224_256_BLOCK_SIZE) {

154 m_len += len;

155 return;

156 }

157 new_len = len - rem_len;

158 block_nb = new_len / SHA224_256_BLOCK_SIZE;

159 shifted_message = message + rem_len;

160 transform(m_block, 1);

161 transform(shifted_message, block_nb);

162 rem_len = new_len % SHA224_256_BLOCK_SIZE;

163 memcopy(m_block, &shifted_message[block_nb << 6], rem_len);

164 m_len = rem_len;

165 m_tot_len += (block_nb + 1) << 6;

166 }

167

168 inline __attribute__((always_inline)) void SHA256::final(unsigned char *digest)

169 {

170 unsigned int block_nb;

171 unsigned int pm_len;

172 unsigned int len_b;

173 int i;

174 block_nb = (1 + ((SHA224_256_BLOCK_SIZE - 9)

175 < (m_len % SHA224_256_BLOCK_SIZE)));

176 len_b = (m_tot_len + m_len) << 3;

177 pm_len = block_nb << 6;

178 //memset(m_block + m_len, 0, pm_len - m_len);

179 for (int i=0; i< pm_len - m_len; ++i)

180 (m_block + m_len)[i] = 0;

181

182 m_block[m_len] = 0x80;

183 SHA2_UNPACK32(len_b, m_block + pm_len - 4);

184 transform(m_block, block_nb);

185 for (i = 0 ; i < 8; i++) {

186 SHA2_UNPACK32(m_h[i], &digest[i << 2]);

187 }

14

188 }

189

190

191

192 void outsource(struct Input *input, struct Output *output)

193 {

194

195 unsigned char digest[DIGEST_SIZE];

196 //memset(digest,0,SHA256::DIGEST_SIZE);

197 for (int i = 0; i < DIGEST_SIZE; i++)

198 digest[i] = 0;

199

200 SHA256 ctx;

201 int input_size=sizeof(input->a) / sizeof(input->a[0]);

202 ctx.update((unsigned char*)input->a, input_size);

203 ctx.final(digest);

204

205 char buf[2*DIGEST_SIZE+1];

206 buf[2*DIGEST_SIZE] = 0;

207 for (int i = 0; i < DIGEST_SIZE; i++)

208 {

209 buf[i] = 0;

210 buf[i+1] =0;

211 // sprintf(buf+i*2, "%02x", digest[i]);

212 output->digest[i] = digest[i];

213 }

214

215 //return std::string(buf);

216 }

�

15

	Introduction
	About isekai
	Computations
	Benchmarking setup
	Proof Time
	Results: Proof and Trusted Setup Sizes
	Results: Verification Time
	Conclusion

