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NP, BPP, . . .

NP
A decision problem is the problem of deciding if a string x belongs
to some language (set of strings) L.
A language is in NP if there is a relation R and a polynomial p(·)
such that x ∈ L if and only if there is a witness y , |y | ≤ p(|x |) such
that R(x , y) = 1.
Example: Sudoku (or your favorite game) is in NP because if I give
you an alleged solution y to an instance x of the Sudoku, you can
easily check that y is indeed a solution.

BPP
A language L ∈ BPP if there is a probabilistic polynomial-time
algorithm (PPT) A such that:

I For any x ∈ L, A(x) = 1 with probability ≥ 2/3.

I For any x /∈ L, A(x) = 1 with probability ≤ 1/3.

That is, BPP languages are easy to decide. We will be thus
interested in non-BPP languages.



Interactive algorithms and protocols
I Each party in our protocol has a public input shared by each

other party, a private input, a private memory, can use
randomness (flip random coins) and interacts with other
parties by exchanging messages on some shared memory.

I This can be seen as proceeding in rounds.
I A party P starts the protocol on input the public input and its

private input and performs some computation (possibly
flipping random coins) and terminates its turn leaving some
string on the shared memory..

I Then, another party Q observes that party P ended its round,
reads the message P left on the shared memory and takes the
turn continuing as before, etc.

I In the end, each party outputs some string that is the result of
its local computation in the last round.

I Denote by Ti the state of the shared memory after each round
i . A transcript of the protocol is the sequence of the states
Ti ’s.
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Interactive Proofs

An interactive proof Π = (P,V) for NP language L with witness
relation RL satisfies:

Completeness

For any pair (x ,w) ∈ RL, the probability (taken over the random
choices of P and V) that at the end of the interaction V(x)
outputs 1 (i.e., accepts x) after interacting with P(x ,w) is 1.

Statistical or computational Soundness

For any, possibly dishonest, prover P?, any x /∈ L, the probability
(taken over the random choices of P? and V) that at the end of
the interaction V accepts x is negligible in |x |.

Proofs useful only for hard languages

If a language is in BPP, then there is no need for a ZK proof of
membership in L because a verifier can check if an input x ∈ L by
itself. Interaction is usually useful only for non-BPP languages.



Interactive Zero-Knowledge Proofs

An interactive proof Π = (P,V) for NP language L can be
additionally HVZK or ZK:

Honest-Verifier Zero-Knowledge (HVZK)

There exists a PPT simulator algorithm Sim that takes as input
instance x ∈ L and outputs a transcript that has the same
distribution as a honest transcript of the execution of V(x) with
Prover(x ,w), for any witness w to x .

Zero-Knowledge (ZK)

For any, possibly dishonest, PPT verifier V?, there exists a PPT
simulator Sim (that can depend on V?) with the above property.
Output of Sim can be statistically or computationally
indistinguishable from honest transcript and in such case we talk
about statistical or computational ZK.



Conflict between ZK and soundness and non-interactivity

ZK clashes with perfect soundness

If there exists a ZK proof with perfect soundness, the simulator
can be used to decide L: run Sim on input x to get a transcript
and outputs the decision that the verifier would take from this
transcript.

ZK clashes with non-interaction
There is no one-message ZK proof even with statistical soundness.

Nevertheless, we will see that non-interactive ZK proofs are
possible in a special model that is of practical relevance.



Σ-protocols [Cramer, Damgard, Schoenmakers ’94]

Special case of public-coin HVZK proofs

Σ-protocol for NP language L with witness relation RL:

I 3-round public-coin: transcript (a, c , z)

I Perfect Completeness

I Special Soundness:

given x and accepting transcripts (a, c , z) and (a, c ′, z ′) for x
with c 6= c ′:

one can efficiently compute w s.t. (x ,w) ∈ RL.

I Perfect Special HVZK:
Sim takes x ∈ L and challenge c and outputs an accepting
conversation (a, c, z) for x



Example: Sigma protocol for DH tuple

I Relation R for DH tuples

I We work in a group of prime order p, e.g., the group of

quadratic residues modulo a prime q
4
= 2p + 1.

I (g , h, u, v) ∈ R iff ∃ w s.t. u = gw and v = hw .
I Useful in many applications

I Protocol
I Prover chooses a random r and sends a = g r , b = hr .
I V sends a random c
I Prover sends z = r + cw mod q.
I V accepts iff g z = auc and hz = bv c .



Example: Sigma protocol for DH tuple

I Completeness: Straightforward.

I Special soundness:
I Given (a, b, c , z),(a, b, c ′, z ′), we have

g z = auc , g z′ = auc
′
, hz = bv c , hz

′
= bv c′ and so (can be

seen that)
w = (z − z ′)/(c − c ′) mod q.

I Special HVZK:
I Given (g , h, u, v) and c , choose random z and compute

I a = g zu−c .
I b = hzv−c .

I Note: no additional computational assumption.



Basic properties of sigma protocols

I Any sigma protocol is an interactive proof with
soundness error 2−t , with t the bit length of the
challenge
I This is because special soundness implies that if x /∈ L, for

each first message a, there is at most one challenge c such
that, for some z , (a, c , z) is an accepting transcript for x .
Since c is a uniformly chosen string of length t, the soundness
error is thus 2−t .

I Properties of sigma protocols are invariant under parallel
composition

I Any sigma protocol is a proof of knowledge with error
2−t

I The difference between the probability that Prove? convinces
V and the probability that Ext obtains a witness is at most 2−t
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AND, OR and compound statements of sigma protocols

I AND of multiple statements: run all in parallel using the
same challenge for all

I OR of two statements
I Prover has a witness, w.l.o.g., for x0 but not for x1.
I Prover chooses a random c1 and runs SIM to get (a1, c1, z1).
I Prover computes first message a0 by running the prover for the

original statement on input (x0,w0), and sends (a0, a1) to the
verifier.

I V sends a single challenge c to the prover.
I Prover chooses c0 s.t. c0 XOR c1 = c .
I Prover already has z1 and can compute z0 using the witness

and sends c0, c1, z0, z1 to the verifier that checks that both
(a0, c0, z0) and (a1, c1, z1) are accepting transcripts.

I Soundness:
I Prover doesnt know a witness for both statements, so can

only answer for a single challenge.
I This means that c defines a single challenge c ′ that is either

c0 or c1 depending on which witness the prover knows, like in
a regular proof.

I Can be generalized to any monotone formula [CDS94]
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The Fiat-Shamir (FS) transform applied to Σ-protocols
I FS transform turns an Σ-protocol into a non-interactive ZK

argument (NIZK).
I To prove a statement x :

I Suppose to have a good hash function H.
I Generate a, compute c = H(a, x), compute z .
I Send (a, c , z)

I To verify a proof (a, c , z) for statement x :
I Verifier checks that c = H(a, x) and that (a, c , z) is an

accepted transcript for the sigma protocol.

Programmable RO model

The non-interactive version of the previous proof system for DH
tuples is not known to be ZK. Given statement x = (g , h, u, v), if
you choose random c , z and compute a = g zu−c , b = hzv−c , with
very low probability H((a, b), x) = c .
Trick: the proof of ZK is in a model where the simulator can
”program“ the RO, i.e., can set H((a, b), x) = c at its like. That
is, the ZK property is proven with a respect to a different hash
functions than the one used in the actual protocol.
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Proofs for Circuit Satisfiability

I We construct a non-interactive ZK (in the programmable RO
model) argument for Boolean Circuit Satisfiability.

I Assume the circuits consist only of NAND gates. A NAND
gate with input wires w0,w0 outputs w2 = ¬(w0 ∧ w1).

I The prover does know the circuit and a witness to the
satisfiability of the circuit whereas the verifier does know only
the circuit. The witness consists of a Boolean assignment to
the input wires of the circuit.

I The prover has to convince the verifier that the circuit has a
satisfying assignment without leaking information about the
assignment.

I Boolean Circuit satisfiability is NP-complete, so by
NP-reductions, we can construct a proof for any other NP
relation.
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Proofs for Circuit Satisfiability (2)

I We use exponential El Gamal encryption:
I The public key pk = (g , h = gw ) and the secret key is w .-
I The encryption of some message m in some ”small“ message

space M with respect to pk is (c1 = g r , c2 = hr · gm).
I To decrypt a ciphertext (c1 = g r , c2 = hr · gm), compute

c2/c
w
1 = gm and extract m by brute force.

I The NIZK for DH can be used to prove that a ciphertext
(c1, c2) for public key pk decrypts to m by showing that the
tuple (g , c1, pk = gw , c2/g

m = cw1 ) is DH for witness w .

I Using OR proofs, we have a NIZK to prove that a ciphertext
decrypts to m1 or m2 and in particular a NIZK to prove that a
ciphertext decrypts to a bit.

I Exponential El Gamal is homomorphic, i.e., if I have two
ciphertexts ct1 and ct2 encrypting resp. m1 and m2, I can
”multiply“ them together to get encryption of m1 + m2.
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Proofs for Circuit Satisfiability (3)

I The prover creates an El Gamal public key pk and associates a
ciphertext to each wire of the circuit in the following way.

I To the i-th input wire corresponding to a bit wi of the witness, the
prover associates a ciphertext encrypting wi .

I Each wire of the circuit that is not an input wire is an output wire
of some gate. The prover evaluates the circuit at each gate and
associates to the output wire of a gate the encryption of the
corresponding bit.

I To each output wire of a gate and to each input wire of the circuit,
the prover also adds an OR proof of the fact that the associated
ciphertext decrypts to 0 or 1, i.e., it is a bit.

I Let t be a ciphertext encrypting the integer −2. For each gate with
ciphertexts ct0, ct1 associated to its input wires and ciphertext ct2
associated to its output wire, the prover also adds an OR proof of

the fact that the ciphertext G
4
= ct0 ∗ ct1 ∗ ct22 ∗ t decrypts to 0 or 1,

i.e., that w0 + w1 + 2w2− 2 ∈ {0, 1}.
I Finally, the prover shows that the output gate decrypts to 1, i.e.,

that the circuit is satisfied by the assignment.
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Proofs for Circuit Satisfiability (4)
I Soundness: Using the homomorphic property of El Gamal and the

above fact, the verifier can check the consistency as follows.

I Fact: If w0,w1 are the values corresponding to the input wires of a
gate and w2 is the value corresponding to its output wire, it is easy
to see that w0,w1,w2 are a valid assignment (i.e., w2 = ¬(w0 ∧w1))
iff w0 + w1 + 2w2 − 2 ∈ {0, 1} and w0,w1,w2 ∈ {0, 1}.

I The verifier verifies (1) that the ciphertext associated to each input
wire and to any other output wire encrypts a bit.

I If ct0 and ct1 are the ciphertexts associated to the input wires of a
gate encrypting resp. w0 and w1, and ct2 is the ciphertext
encrypting w2 associated to the output wire of the gate, the verifier
can compute using the homomorphic properties of El Gamal the
ciphertext G encrypting w0 + w1 + 2w2 − 2 and (2) verify that it
decrypts to a bit, i.e., that w0 + w1 + 2w2 − 2 ∈ {0, 1}.

I By the previous Fact and (1) and (2), the verifier has the assurance
that the ciphertext associated to each wire respects the
computation with respect to the input wires.

I Finally, the verifier checks that the ciphertext associated with the
output wire of the circuit decrypts to 1, thus the circuit is satisfiable.
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Exercise
Prove that the previous NIZK is ZK.

Bonus: Using the previous NIZK for Circuit Satisfiability and the
Sikoba’s compilers from programs to circuits, can we give a a ZK
proof that the previous NIZK is ZK?
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Conclusions

I We introduced the powerful concept of ZK proof systems.

I We presented efficient ZK proof systems for practical
purposes.

I We showed how a specific and efficient proof system can be
turned into a general proof system to prove correctness of
computation.
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