
ZK is Crypto: 10 Mistakes You Probably
Make and How to Avoid Them
Dmitry Khovratovich

Myself
Sikoba - Researcher

Dusk - Senior Cryptographer

Evernym - Principal Cryptographer

ABDK Consulting - Founder

Khovratovich@gmail.com

Broke 20+ cryptographic schemes (3 at the time of
presentation)

Deanonymized Bitcoin

Designed Argon2 (password hashing standard),
Equihash and MTP (Proofs of work in 10+
schemes), Poseidon and Starkad (hashes for zero
knowledge).

Consulting for the last 10 years.

Audited 50+ smart contracts, found flaws worth of
$10mln

http://research.sikoba.com/www/index.html
https://dusk.network/
https://www.evernym.com/
https://abdk.consulting/
https://scholar.google.com/citations?user=ht7jk1IAAAAJ&hl=en
https://orbilu.uni.lu/bitstream/10993/18679/1/Ccsfp614s-biryukovATS.pdf
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Equihash
https://zcoin.io/ufaqs/what-is-mtp/
https://eprint.iacr.org/2019/458.pdf

Mindset

Building crypto is not just building a regular
application, it is rather a carcasse of your building

● Higher risks
● Higher costs
● Difficult to repair
● If there is problem you will know only after

everything gets broken

Mistake 1.

Invent your own
crypto

● Creating a new crypto is surprisingly hard, error
prone and is a big risk

Mistake 1.

Invent your own
crypto

● Creating a new crypto is surprisingly hard, error
prone and is a big risk

● 80% crypto designed by cryptographers gets
broken, this rate reaches 99% for non
cryptographers.

● Sometimes you do need your own crypto, for
example you need a new protocol. Then hire a
cryptographer.

Mistake 2.

Security by
obscurity

● Design an algorithm/protocol, but never tell the
details?

Mistake 2.

Security by
obscurity

● Design an algorithm/protocol, but never tell the
details?

● Wrong practice: scheme details are often easy
to reverse-engineer.

● The more third-party review you get, the better
protocol you obtain.

● After centuries, cryptographers have come to a
conclusion: “the only secret part of a scheme
should be the key”.

Protocol Design

Sometimes you need a new protocol tailor-made for
your business.

You checked there is no analogue available.

Mistake 3.

One cryptographer
is enough

● You hired a good cryptographer, gave him the
task and money, and are now waiting for the
result.

Mistake 3.

One cryptographer
is enough

● You hired a good cryptographer, gave him the
task and money, and are now waiting for the
result.

● Apparently, even best cryptographers never
work alone.

● A big part of security comes from the public
scrutiny, so

1. Review the crypto design with other team
members, even not cryptographers.

2. Use rewards or competitions if you can.
3. Prefer clarity and brevity to complexity.

Mistake 4.

It works so it is
good

1. You mentioned a problem to a friend.
2. In a week, some unknown suddenly comes with

a solution.
3. It works and is reasonably fast. Should you

accept it?

Mistake 4.

It works so it is
good

1. You mentioned a problem to a friend.
2. In a week, some unknown suddenly comes with

a solution.
3. It works and is reasonably fast. Should you

accept it?

No, because:

● The solution might not be optimal;
● The solution might be less secure than potential

alternatives;
● A week is too short for a good design.

Mistake 5.

Some privacy is
enough

Suppose you design a private money transfer system.

● Transfers are not fully anonymous because it
would be too expensive.

● A cheaper system allows narrowing down
sender candidates to 10,000. Is it good enough?

Apparently not as there are many ways to amplify the
privacy loss. It can become 1-of-10.

There is no some privacy, there is privacy or no
privacy.

Mistake 5.

Some privacy is
enough

Suppose you design a private money transfer system.

● Transfers are not fully anonymous because it
would be too expensive.

● A cheaper system allows narrowing down
sender candidates to 10,000. Is it good enough?

Mistake 6.

Complex setup

Your team comes up with a fast and secure solution.
However, it needs a lot of time and work for
initialization. Should you take it?

Mistake 6.

Complex setup

Your team comes up with a fast and secure solution.
However, it needs a lot of time and work for
initialization. Should you take it?

Probably not. A sophisticated setup may be difficult to
repair.

Example:

1) In March 2018 a member of private
cryptocurrency Zcash found how to print fake
coins. The problem was in the setup phase
which was public but revealed too much.

2) Zcash decided to keep the problem secret for a
few months till the scheduled new setup, risking
an attacker finding the same problem.

Implementation

The problem has been solved: a beautiful and
secure protocol has been found, now it is time to
implement it.

Mistake 7.

Key stored
everywhere

You deal with secret keys in many components.
Should you store them everywhere where they are
used, to minimize the risks?

Mistake 7.

Key stored
everywhere

You deal with secret keys in many components.
Should you store them everywhere where they are
used, to minimize the risks?

Apparently not. A better solution is to design a special
component that stores all keys, and to guard it
properly.

Mistake 8.

Old libraries and old
coding style

You see a set of well established libraries for
cryptography in a familiar programming language.
Should you use them?

Mistake 8.

Old libraries and old
coding style

You see a set of well established libraries for
cryptography in a familiar programming language.
Should you use them?

First check the following:

- Support of the primitives (curves or ciphers)
that you need.

- Protection from recent attacks (proper key and
nonce length, data format, etc.).

- Side-channel protection, if applicable.
- Standard conformance.
- As usual: support and licensing.

Also, open-source does not imply bug absence.

Mistake 9.

Programmers who
design and
optimize

Good programmers are keen to crypto design, often
thinking it is as easy as regular architecture design.

Mistake 9.

Programmers who
design and
optimize

Good programmers are keen to crypto design, often
thinking it is as easy as regular architecture design.

Crypto designed by good coders gets cleaner code but
has questionable design decisions.

Cryptographer and programmer should work in pair
and review each other’s work.

Mistake 10.

Randomness

Most programming languages have built-in random
generators.

Mistake 10.

Randomness

Most programming languages have built-in random
generators.

However, they might be enough for statistical tests
only.

● Use one master seed from proper randomness
source, ideally a combination of sources.

● Derive other randomness deterministically and
one-wayed from the seed.

Summary

1. Do not invent your own crypto
2. Make design public and auditable.
3. One person is never enough.
4. Working does not mean `good`.
5. Little privacy means no privacy. The same for

security.
6. Secure your keys in one place.
7. Reevaluate third-party code.
8. Good programmers are not crypto designers.
9. Use cryptographically strong randomness and

derive from it.

Questions?

