
Overview of open source libraries
for Fully Homomorphic Encryption (FHE) ∗

Guest contribution by
Oussama Amine†‡

September 2019

Abstract

Several open-source (F)HE libraries are available, with each implementing one or several
of the state of the art schemes. In order to summarize, to a certain extent, the state of affairs,
we have written a short report on some of the important libraries in which we look at certain
high-level features that constitute the differences between them.

1 Introduction

1.1 Nature of the report

This report focuses mostly on a subset of the publicly available libraries for F/HE. We do not cover
all the available libraries but only those that have a relatively large development basis. We also
neither go into the technical details of the implementations nor give a general description of their
workings. We present the big picture, describing their building blocks, how these blocks contribute
to the implementation of the F/HE schemes in question and the external libraries on which they
depend.

1.2 Context

Big data, cloud computing and the need for privacy are three pillars that can help anchor our
understanding of the problem that homomorphic encryption (HE) contributes to solving. HE is a
form of encryption that has the additional property of being compatible with a set of computational
operators, for example {ADD(x, y), MUL(x, y)}.

∗Research supported by the Fantom Foundation
†PhD candidate in Mathematics, University of Oslo
‡The author would like to thank Patricia Thaine for her feedback on earlier versions of this report as well as for

many fruitful and insightful discussions.

1



That is:

Decrypt(Evaluate(f, Encrypt(x))) == f(x)

where f is a function often represented as a set of arithmetic gates i.e. a circuit.

The first plausible construction of a fully homomorphic encryption scheme was proposed in Gentry
(2009) [9]. Prior to Gentry’s breakthrough, there had been many attempts to solve this problem,
but all of these can be said to belong to the category of Partially HE schemes. These are HE
schemes that support only one type of computational operator (i.e. either Add or Mult). An
exception to this is that developed by Bonch et al. (2005) [1], which can be categorized as a
Somewhat HE scheme (SWHE), namely a scheme that supports the homomorphic evaluation of
only a subset of the set of all possible circuits. In Bonch et al. [1], the circuits are allowed to have
an arbitrary number of additions but only one multiplication.

Gentry’s work [9] was the first to show that it was possible to realize Fully HE (FHE) both
theoretically and practically. Gentry’s approach, also sometimes called Gentry’s blueprint, is based
on three ingredients:

1. A SWHE scheme

2. Squashing of Decrypt

3. Bootstrapping.

It is important to mention that this three-ingredient blueprint played a defining role for all of
the available practical implementations of HE schemes and that improvements and trade-offs be-
tween these three ingredients are to a large extent what separates them into the three-generation
classification:

1. First generation: This is essentially Gentry’s 2009 proposal and its practical implementation
in Gentry-Halevi (2011) [10]. These schemes suffer from the problem of exponential growth
of the so-called noise in the number of multiplication gates. The noise can be understood as
a quantity that helps ”drown” out data and thus makes it hard to infer anything meaningful
about it. The rapid growth of noise made bootstrapping difficult, and additional transfor-
mations at the level of the Decrypt function where necessary, i.e. squashing. It is also worth
mentioning that this squashing is based on certain non-standard extra hardness assumptions,
and thus the security of the scheme is affected.

2. Second generation: The problem of exponential noise growth makes the bootstrapping step
from a SWHE to a FHE scheme difficult although still feasible through the squashing pro-
cedure of the Decrypt circuit. Second-generation schemes are the results of various tech-
niques aimed at better noise management, thus enabling the construction of practical SWHE
schemes that support the evaluation of general circuits (of polynomial size) with only a re-
striction on the number of multiplications. Thus, while in the first generation the SWHE
was constructed with the ultimate aim of evaluating a (squashed if necessary) Decrypt circuit
plus one NAND gate, the SWHE in the second generation can evaluate any general circuit
of predetermined size. This distinction is emphasized by referring to these as Leveled FHE
(LFHE) schemes.

3. Third generation: These schemes do away with the two most important techniques that make
up the second generation, namely key switching and modulus switching. This improves per-
formance but at the expense of changing the representation of the ciphertext into one based
on matrices. This makes many of the optimization developed for generation-two schemes
incompatible with this generation, e.g. packing.

2 The libraries

The following are common to all libraries:

2



• All are written in C++;

• All are based on RLWE for speed and efficiency (this does not apply to Palisade as it is more
of a framework for general lattice cryptography);

• All are second-generation with SIMD support, except for TFHE and its predecessor FHEW.

2.1 SEAL

The SEAL library1, made open source by Microsoft towards the end of 2018, is a library with no
dependencies that implements two (levelled) second-generation Homomorphic schemes, namely:

1. The scale-invariant B/FV scheme of Brakerski (2012) [2], and its implementation in Fan et
al. (2012) [8], where modulus switching is avoided by the use of a slightly different encryption
function than the one in Brakerski et al. (2014) [3]. Other than this, [3] and [8] are similar
in spirit.

2. The CKKS scheme, as introduced in Cheon et al. (2017) [5]. This scheme is the first
to provide native support for fixed-point arithmetics. This, however, comes at the cost of
giving only approximate results. Nevertheless, for real-world applications, CKKS is a strong
choice, as demonstrated by the results in [14].

The SEAL library has support for SIMD-type operations for both schemes. SEAL does not support
bootstrapping and does not have external dependencies.

2.2 HElib

The HElib library2 is designed and maintained by IBM. The first implementation included one for
the Brakerski et al. (2014) scheme [3] and provided support for data manipulation instructions,
e.g. the packing techniques as introduced in Smart et al. (2014) [16]. As of the 1.0.0 beta release,
HElib also includes partial support for the CKKS scheme. The HElib library is broadly composed
of four parts:

1. The bottom layer: Implements the mathematical structures and various other utilities needed
by the top layers. This layer makes heavy use of the NIT [15] and GMP [11] external libraries.

2. The second layer: Implements the Double-CRT polynomial representation. This is the most
important building block for HElib from an implementation point of view.

3. The third layer: Implements the scheme itself, i.e. Decrypt, Encrypt, (native) Evals and
other methods related to the modulus/key switching techniques.

4. The top layer: Provides interfaces that permit arrays of plaintext to be worked on simulta-
neously while using the packed representation.

A diagram detailing the different components can be found on page 4 of [13]

2.3 PALISADE

PALISADE3 is a general-purpose library providing implementations of various building blocks for
lattice-based cryptography along with implementations of advanced lattice-based cryptographic
protocols such as public-key encryption and homomorphic encryption. This modular design ap-
proach makes it possible to achieve both implementations of standard protocols that can be used

1https://github.com/microsoft/SEAL
2https://github.com/homenc/HElib
3https://git.njit.edu/palisade/PALISADE

3



out of the box for building applications on top and as a platform for more advanced users, allowing
experimentation and the possibility to combine their specific implementations with those provided
by the library. This modular approach, combined with the multi-level abstraction design approach,
makes PALISADE a versatile library. PALISADE is composed of the following layers that sit on
top of one another:

1. At the lowest and most basic level sits the Primitive Math layer, which supports basic
modular arithmetic operations and multi-precision arithmetic. This layer includes efficient
implementations of several number-theoretic algorithms (e.g. number-theoretic transform
and Fermat-theoretic transform) as well as samplers of the discreet Gaussian distribution
and other utilities. The interface for the math functionality is provided by both custom
multi-precision libraries and external ones such as NTL and GMP.

2. On top of the previous layer sits the Lattice Operation layer. This layer supports all
lattice constructs and is used to provide implementations of the various Poly classes, which
are in turn used to build the Plaintext and Ciphertext classes. This layer is used to work
in polynomial rings, which are the native elements that the crypto layer works with.

3. The Crypto layer provides the cryptographic functionalities (e.g. Encryption, decryption
methods and container classes for parameters specific to those schemes) required for each
specific cryptographic protocol (e.g. PKE, SWHE ...) This layer manipulates Plaintext
and Ciphertext objects and uses the former to communicate with the Encoding layer.

4. The Encoding layer sits on top of the lattice operations layer and provides all the classes
and methods that can be used to transform the raw plaintext message into a Plaintext
object and back.

In terms of HE scheme capabilities, PALISADE most notably implements the second generation
B/FV[8] and BGV [3] schemes and some of their variants.

2.4 TFHE

This scheme and the library with the same name that implements it are part of the third gener-
ation (some call it the fourth generation and reserve the term third generation for Gentry et al.
(2013) [12]), and it is marked, in contrast to first-generation schemes, by its philosophy of making
bootstrapping a part of the scheme from the get-go.

This is part of a new wave of schemes that one can call bootstrapped schemes. These schemes are
marked by their integration of bootstrapping as a key component of the scheme. This bootstrapping
or, to be more precise, refreshing procedure aims at keeping the noise at a certain appropriate level
before every (homomorphic) evaluation. Moreover, the refresh procedure is applied to the output
of each gate instead of at its input.

More precisely, in FHEW [7], which is the predecessor to TFHE [6], it is shown that if one works
with the universal set of gates consisting of the NAND gate then one can implement this operation
homomorphically, namely HomoNAND, as a simple combination of additions, albeit it in a different
setting than the original one. A requirement for the correctness of this implementation, i.e. of
HomoNAND, is that the two inputs (i.e. ciphertexts) are of a certain form, and this form is the
result of a so-called refresh process. This refresh process makes up the bulk of the computational
work in the homomorphic evaluation and, in fact, it can be shown that the cost of HomoNAND is
essentially the cost of a single refresh.

In Ducas et al. (2015) [7], it is claimed that the evaluation of this HomoNAND gate (obviously,
with the refresh) is achieved in under a second on a personal computer. In Chillotti et al. (2016)
[6], this result is improved to under 0.1 second per gate. Both TFHE and FHEW rely on efficient
implementations of FFTW.

4



References

[1] Boneh, Dan, Eu-Jin Goh, and Kobbi Nissim. ”Evaluating 2-DNF formulas on ciphertexts.”
Theory of Cryptography Conference. Springer, Berlin, Heidelberg, 2005.

[2] Brakerski, Zvika. ”Fully homomorphic encryption without modulus switching from classical
GapSVP.” Annual Cryptology Conference. Springer, Berlin, Heidelberg, 2012.

[3] Brakerski, Zvika, Craig Gentry, and Vinod Vaikuntanathan. ”(Leveled) fully homomorphic
encryption without bootstrapping.” ACM Transactions on Computation Theory (TOCT) 6.3
(2014): 13.

[4] Brakerski, Zvika, and Vinod Vaikuntanathan. ”Efficient fully homomorphic encryption from
(standard) LWE.” SIAM Journal on Computing 43.2 (2014): 831-871.

[5] Cheon, Jung Hee, et al. ”Homomorphic encryption for arithmetic of approximate numbers.”
International Conference on the Theory and Application of Cryptology and Information
Security. Springer, Cham, 2017.

[6] Chillotti, Ilaria, et al. ”Faster fully homomorphic encryption: Bootstrapping in less than
0.1 seconds.” International Conference on the Theory and Application of Cryptology and
Information Security. Springer, Berlin, Heidelberg, 2016.

[7] Ducas, Léo, and Daniele Micciancio. ”FHEW: bootstrapping homomorphic encryption in
less than a second.” Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, Berlin, Heidelberg, 2015.

[8] Fan, Junfeng, and Frederik Vercauteren. ”Somewhat Practical Fully Homomorphic Encryp-
tion.” IACR Cryptology ePrint Archive 2012 (2012): 144.

[9] Gentry, Craig: A fully homomorphic encryption scheme. Vol. 20. No. 09. Stanford: Stanford
University, 2009.

[10] Gentry, Craig, and Shai Halevi. ”Implementing gentry’s fully-homomorphic encryption
scheme.” Annual international conference on the theory and applications of cryptographic
techniques. Springer, Berlin, Heidelberg, 2011.

[11] https://gmplib.org/

[12] Gentry, Craig, Amit Sahai, and Brent Waters. ”Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based.” Annual Cryptol-
ogy Conference. Springer, Berlin, Heidelberg, 2013.

[13] http://people.csail.mit.edu/shaih/pubs/he-library.pdf

[14] http://www.humangenomeprivacy.org/2018/index.html

[15] https://www.shoup.net/ntl/

[16] Smart, Nigel P., and Frederik Vercauteren. ”Fully homomorphic SIMD operations.” Designs,
codes and cryptography 71.1 (2014): 57-81.

5


	Introduction
	Nature of the report
	Context

	The libraries
	SEAL
	HElib
	PALISADE
	TFHE


