
Bulletproofs ∗

Dmitry Khovratovich

Sikoba Research

15th May 2019

1 Introduction

Bulletproofs [BBB+18] is a recent technique for verifiable computation that is particularly
efficient for range proofs (they take only 600 bytes). Bulletproofs has been recently implemented
for a few privacy-oriented cryptocurrencies, including Monero [mon18], to reduce the range proof
sizes.

Bulletproofs has the following features:

• It does not require a trusted setup as compared to ZK-SNARKs [BCG+13];

• It does not use pairings and works with any elliptic curve with a reasonably large subgroup
size; the fastest elliptic curves such as Ristretto [ris18] are supported.

• It uses its own format for computation, which is easily convertible to R1CS [PHGR13]
and back using linear algebra.

• The verifier cost scales linearly with the computation size.

2 Performance

The exact performance of Bulletproofs depends on the chosen elliptic curve and undertaken
optimization. With the optimization proposed in the original paper, we have the following
complexity for proving a statement about a circuit with n multiplication gates:

• Prover makes 6 group multi-exponentiations of length 2n, each taking O(n/ log n) time
using the Pippenger algorithm [Pip80], and makes O(n) scalar multiplications in Fp.

• The proof size is 8 + 2 log n group elements and 5 scalars.

• Verifier makes 1 group multi-exponentiation of length 2n, taking O(n/ log n) time, and
also makes O(n) scalar multiplications. Benchmarks demonstrate that the Verifier run-
ning time is roughly 1/20 of the Prover running time.

∗Research supported by Fantom Foundation

1



3 Technical Details

3.1 Overview

3.1.1 Computation

Prover and Verifier agree on the computation to be executed. This computation must be
converted to an arithmetic circuit which operates on a certain prime field Fp. The circuit
should contain multiplication and addition gates, as well as scalar multiplication. Let circuit C
take input variables I and produce output variables O, then the Bulletproofs protocol allows
proving statements of the form

C(I) = O, (1)

where each variable of I and O is either a public constant or a private variable (known only
to Prover). We denote these external private variables by v, while (private) variables that are
local to the circuit are denoted by a.

The circuit with n multiplication gates is described as a set of three vectors of field elements
aL, aR, aO, which satisfy n multiplication constraints aLi · aRi = aOi, collectively denoted as

aL ◦ aR = aO, (2)

As this does not completely describe the circuit, we need to introduce q additional affine
constraints

Lj(aL, aR, aO,v) = 0. (3)

which can be expressed as a matrix equation:

WLaL +WRaR +WOaO +WV v = c. (4)

This is done so that (1) becomes equivalent to (2) and (4) taken together.
It is a simple linear algebra exercise to show that a set of R1CS constraints [PHGR13] of

form L1(a)·L2(a) = L3(a) can be converted to such representation by introducing new variables
and performing Gaussian elimination.

3.1.2 Protocol

In short, the Bulletproofs protocol for arithmetic circuits works as follows.

1. Prover and Verifier agree on the circuit C in the format of equations (2) and (4).

2. Prover commits to internal circuit variables a.

3. The equations apparently hold if for certain vector polynomials l, r, whose coefficients
linearly depend on a, the product t is a polynomial with coefficient t2 being equal to the
circuit-determined affine function of external variables: t2 = L(v).

4. For random x Prover commits to l(x), r(x), t(x), and other coefficients of t.

5. Using a clever inner-product argument, Prover proves that in the commitments above,
t(x) is a product of the former two committed evaluations l(x), r(x).

6. Prover proves that t(x) and other committed coefficients of t correspond to a polynomial
with t2 = L(v).

7. Prover proves that the committed evaluations l(x), r(x) match the committed variables
a according to the definition of l, r.

2



3.2 Details

1. (a) Parties agree on the circuit and its arithmetic representation. They select group G
where DLP is hard (commonly – a group of elliptic curve points).

(b) Parties agree on generators: g, h,g,h (the last two are vectors of length n ) in G.

(c) The external variables v are given as commitments Vj = gvjhγj , j ∈ [1,m] where
Prover knows all γj, vj .

2. (a) Prover commits to aL, aR, aO and blinding vectors sL, sR with random α, β, ρ:

AI = hαgaLhaR ; AO = hβgaO ; S = hρgsLhsR ;

(b) From the commitments Prover generates challenge values y, z.

3. (a) Equation (2) is equivalent to

〈aL ◦ aR − aO,y
n〉 = 0. (5)

where yn = (1, y, y2, . . . , yn−1).

(b) Equation (5) and (4) hold together if

zqWLaL + zqWRaR + zqWOaO + 〈aL ◦ aR − aO,y
n〉 = 〈zq, c〉 − zqWV v. (6)

where zq = (z, z2, . . . , zq).

(c) Polynomials are defined as

l(X) = aLX + aOX
2 + sLX

3 + y−nzqWRX;

r(X) = (yn ◦ aR)X − yn + zqWO + zqWLX + (yn ◦ sR)X3.

(d) Let t(X) = 〈l(X), r(X)〉 =
∑

i∈[1,6] tiX
i. Then (6) holds if

t2 = y−nzqWRzqWL + 〈zq, c〉 − zqWvv

4. (a) Prover commits to coefficients of t:

Ti = gtihτi

for randomly selected τi.

(b) Prover computes x as as hash of all previous commitments.

(c) Prover commits to l(x), r(x), t(x):

C ′1 = gl(x)hy−n◦r(x); C ′2 = gt(x). (7)

5. Prover proves that C ′2 is a commitment to the inner product of what is committed in C ′1
using a special subroutine that produces a logarithmic-size proof. Concretely, we prove
that for given P we know a,b such that

P = gahbg〈a,b〉. (8)

This is done as follows:

(a) Partition all vectors in the left and right parts and denote them left and right, re-
spectively.

3



(b) Compute

L = g
aleft

righth
bright

left g〈aleft,bright〉; R = g
aright

left h
bleft

rightg
〈aright,bleft〉;

and send to Verifier.

(c) Hash L,R, P and get x.

(d) Compute a′ = xaleft + aright/x and b′ = bleft/x+ xbright.

(e) Prove that

Lx
2 · P ·R1/x2 = g

a′/x
left g

xa′

righth
xb′

lefth
b′/x
rightg

〈a′,b′〉. (9)

This is done by taking vectors a′,b′ out of the exponent and formulate (9) as (8).
Then we do this recursively starting with step (a). For vectors of length 1 send them
as is.

6. Prover proves that l(x) and r(x) in C ′1 are formed according to the definition:

C ′1
?
= AxIA

x2

O S
x3gy−nzqWRh−1

n+y−n◦zqWO+y−n◦zqWLxhαx+βx
2+ρx3

where µ = αx+ βx2 + ρx3 is given to Verifier as a single value.

7. Prover proves that t(x) is the evaluation of a polynomial where coefficients ti are deter-
mined by the commitments Ti, commitments V and δ(y, z, c) = y−nzqWRzqWL + 〈zq, c〉.
As in the previous proof, this is done in exponent using Ti as bases:

C ′2h
τx ?

= gx
2δ(y,z,c)Vx2zqWvT x1 T

x3

3 T x
4

4 T x
5

5 T x
6

6 .

where τx = τ1x+ τ3x
3 + τ4x

4 + τ5x
5 + τ6x

6 is sent to Verifier as a single value..

4 Implementation

Bulletproofs can use any group of prime order where the discrete logarithm problem is hard.
The fastest such groups with 128-bit security level are brought by elliptic curves such as
Ed25519 [BDL+12]. Currently, two implementations are available: reference one that uses
the secp256k1 curve, and dalek [dal18] that uses the Ristretto group [ris18] – a compressed
group of Ed25519 points.

In the following text we consider the dalek implementation. Dalek supports both the natural
Bulletproofs format for circuits and the R1CS format [BCG+13]. We show how to create proofs
using the R1CS wrapper.

The procedure is as follows:

1. Prover and Verifier agree on the R1CS generation code (see below). Both Prover and
Verifier will run a copy of this code at a later step.

2. Verifier creates a set of generators by calling PedersenGens and BulletproofGens and pro-
vides them to Prover.

3. Prover initializes the proof procedure by initializing the Prover class with the generators
above.

4. Prover commits to variables v (see Section 2) by calling commit. The commitments are
added to Prover’s transcript. The transcript is used to create challenges.

4



5. Prover runs the R1CS generation code:

• The set S of the variables that can be used in constraints is v in the beginning. Note
that the values of S are known to the Prover class.

• To create a constraint of form

L1(S)× L2(S) = L3(S),

Prover calls multiply with two arguments x and y, where x and y are created as
LinearCombination of variables from S with the coefficients determined by L1, L2. The
call returns three new variables x′, y′, z′ with new additional constraints x′ = L1(S),
y′ = L2(S), and x′×y′ = z′. Prover then calls constrain with z′−z where z is created
as LinearCombination of variables from S with the coefficients determined by L3.

Note that this procedure also evaluates all new variables and adds their values to
the Prover object.

• If Prover needs to create a variable not defined by a previous multiply call, he has to
create a Variable object and provide the actual value for it to be included into S.

6. Prover calls prove to finalize the proof and passes it to Verifier.

7. Verifier creates the Verifier object and imports commitments.

8. Verifier runs the same R1CS generation code but he does not know the values.

9. Verifier checks the proof by calling verify.

5 Definitions

The vector exponentiation hx for vectors h = (h1, h2, . . . , hl),x = (x1, x2, . . . , xl) of dimension
l is defined as

hx = hx11 h
x2
2 · · ·h

xl
l ,

References

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more.
In IEEE Symposium on Security and Privacy, pages 315–334. IEEE, 2018.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
Snarks for C: verifying program executions succinctly and in zero knowledge. In
CRYPTO (2), volume 8043 of Lecture Notes in Computer Science, pages 90–108.
Springer, 2013.

[BDL+12] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-
speed high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89,
2012.

[dal18] dalek-cryptography: Bulletproofs, 2018. https://github.com/

dalek-cryptography/bulletproofs.

[mon18] Monero becomes bulletproof, 2018. https://medium.com/digitalassetresearch/
monero-becomes-bulletproof-f98c6408babf.

5

https://github.com/dalek-cryptography/bulletproofs
https://github.com/dalek-cryptography/bulletproofs
https://medium.com/digitalassetresearch/monero-becomes-bulletproof-f98c6408babf
https://medium.com/digitalassetresearch/monero-becomes-bulletproof-f98c6408babf


[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE Symposium on Security and Privacy,
pages 238–252. IEEE Computer Society, 2013.

[Pip80] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM J. Comput.,
9(2):230–250, 1980.

[ris18] The ristretto group, 2018. https://ristretto.group/ristretto.html.

6

https://ristretto.group/ristretto.html

	Introduction
	Performance
	Technical Details
	Overview
	Computation
	Protocol

	Details

	Implementation
	Definitions

